Vollstandige Anleitung: Automatisches Backup mit
Borg (Linux)

Deutsch + Englisch — allgemein formuliert, ohne Projekt-/DB-Namen.

Ziel: Ein Produktionsserver sichert Dateien und Datenbanken automatisch auf einen getrennten
Backup-Server. Borg speichert verschlisselt, nutzt Deduplizierung (gleiche Daten werden nicht doppelt
abgelegt) und halt eine definierte Historie.

A. Ubersicht & Voraussetzungen

B. Backup-Server vorbereiten

C. Produktionsserver vorbereiten

D. Repository testen

E. Backup-Skripte (Dateien + Datenbank)

F. Zeitplan (Cron)

G. Aufbewahrung (Retention/Prune)

H. Kontrolle: Hat das Backup geklappt?

I. Restore: einzelne Dateien, ganze Verzeichnisse, Datenbanken
J. Disaster Recovery: kompletter Neuaufbau
K. Typische Fehler & schnelle Lésungen

L. Sicherheit & gute Praxis

A. Ubersicht & Voraussetzungen

Du hast zwei Server: « PROD = Produktionsserver (lauft dauerhaft) « BACKUP = Backup-Server (nimmt nur
Backups an) Wir sichern: 1) Dateien (z. B. /lhome, /etc, wichtige Konfigurationen) 2) Datenbanken (z. B.
MariaDB/MySQL) — taglich eine kleinere/,Haupt“-DB und wdchentlich eine sehr grof3e DB. Wichtig:
Cron-Jobs laufen ohne interaktives Passwort. Deshalb wird Borg per BORG_PASSCOMMAND automatisiert
entsperrt.

Platzplanung in einfach

* Borg spart Platz durch Deduplizierung — trotzdem wéachst ein Backup-Repository mit der Zeit. » Bei grofl3en
Datenbanken gilt: Wenn sich taglich viel &ndert, wéchst auch das Backup merklich. « Mit 1 TB Backup-Platte
ist eine konservative Historie sinnvoll (weniger Wochen/Monate).

B. Backup-Server vorbereiten

Alle Befehle in diesem Abschnitt laufen auf dem BACKUP-Server.

1) Borg installieren
apt - get update
apt-get install -y borgbackup

2) eigenen Benutzer fir das Repository anl egen (ohne Shell-Login ist ok)
adduser --di sabl ed-password --gecos "" borg

3) Repository-Verzeichnis anl egen
nmkdir -p /srv/borg

chown borg: borg /srv/borg

chnod 700 /srv/borg

Repository initialisieren (als Benutzer borg):

su - borg
borg init --encryption=repokey /srv/borg
Passphrase sicher notieren (ohne sie komrst du spater N CHT an di e Backups)

Optional: Key exportieren (sehr empfohlen):

su - borg
borg key export /srv/borg /home/borg/borg-key-export.txt
chnod 600 / hone/ bor g/ bor g- key- export . txt

C. Produktionsserver vorbereiten

Alle Befehle in diesem Abschnitt laufen auf dem PROD-Server.

Borg installieren
apt - get update
apt-get install -y borgbackup

Dat enbank-Tool s (fir Mari abDB/ MySQ.)
apt-get install -y mariadb-client gzip
(mysql dunmp ist neist schon dabei, sonst: apt-get install -y mariadb-client)

SSH Key fur root (oder einen dedizierten Backup-User) erzeugen
ssh-keygen -t ed25519 -C "prod-to-backup"
ENTER dr ucken fur Standardpfad, dann optional Passphrase (hier: besser ohne, weil Cron)

SSH-Key auf BACKUP-Server tbertragen:

ssh-copy-id bor g@ACKUP_I P
Beimersten Mal Host-Key bestétigen (yes) und borg-Passwort eingeben

Test: Login ohne Passwort muss gehen:
ssh bor g@ACKUP_I P "echo K"

Passphrase-Automation fiir Borg (PROD)

Cron hat oft eine ,leere” Umgebung. Deshalb hinterlegen wir ein kleines, ausfiihrbares
Passphrase-Kommando. Es liest die Passphrase aus einer Datei mit restriktiven Rechten.

1) Passphrase-Datei anlegen (lnhalt = exakt die Borg-Passphrase, nur eine Zeile)
nmkdir -p /root/.config/borg

chnod 700 /root/.config/borg

nano /root/.config/borg/ passphrase

chnod 600 /root/.config/borg/ passphrase

2) Passcommand- Skri pt anl egen
cat >/etc/borg-passcomrand <<' EOF

#!/ bin/ sh
cat /root/.config/borg/passphrase
ECF

chnod 700 /etc/borg-passcomand

Test (PROD):
BORG_PASSCOWVAND=/ et ¢/ bor g- passcommand borg i nfo bor g@ACKUP_I P:/srv/borg >/dev/null && echo

D. Repository testen
Kleines Test-Backup (PROD - BACKUP):

letc testen
BORG_PASSCOWMAND=/ et ¢/ bor g- passcommand borg create --stats --conpression |z4 \
bor g@ACKUP_I P: / srv/ borg: :test-etc-$(date +%) /etc

Liste anzei gen (PROD)
BORG_PASSCOWVMAND=/ et ¢/ bor g- passcommand borg |ist borg@ACKUP_I P:/srv/borg | tail

E. Backup-Skripte

Wir nutzen 3 Skripte auf PROD: 1) backup-home.sh — tagliches Files-Backup (z. B. /home) 2)
backup-daily.sh — taglicher Datenbank-Dump der ,Haupt“-DB(s) 3) backup-weekly.sh —wé6chentlich ein
Dump einer sehr gro3en DB (Asset-/Media-/,Monster“-DB) Wichtig: Die Skripte schreiben in ein Logfile. Das
ist spéater deine Hauptkontrolle.

El) /root/backup-home.sh (PROD)

cat >/root/backup-hone. sh <<' ECF
#!/ bi n/ bash
set -euo pipefail

export BORG_PASSCOVMAND="/ et ¢/ bor g- passconmand"
export BORG RSH="ssh"

DATE=$(dat e +%)

REPO=" bor g@ACKUP_I P: / srv/ bor g"
ARCHI VE=" hone- dai | y- $DATE"
LOG="/var/| og/ backup- borg. | og"

{
echo "==== $(date -u) HOVE gestartet: $ARCH VE ===="
borg create --lock-wait 600 --stats --conpression |z4 \
"$REPQC : $ARCHI VE" \
/ horre \
--exclude '/ home/*/.cache' \
--exclude '/ home/ */ Downl oads'
echo "==== $(date -u) HOVE fertig: $ARCH VE ===="

Retention (konservativ)
borg prune --lock-wait 600 -v --list "$REPO" \
-a '"honme-daily-*" \
--keep-dail y=14 --keep-weekl y=8 --keep-nont hl y=6

echo "==== $(date -u) HOME prune fertig ===="
} >> "$LOG' 2>&1
ECF

chnod +x /root/backup-hone. sh

E2) /root/backup-daily.sh (PROD)

Taglicher Dump ausgewahlter Datenbanken. Allgemein formuliert: ersetze DB_A und DB_B durch deine
Jaglichen” Datenbanken.

cat >/root/backup-daily.sh <<' EOF
#! / bi n/ bash
set -euo pipefail

export BORG_PASSCOVVAND="/ et ¢/ bor g- passconmand”
export BORG RSH="ssh"

DATE=$(dat e +%")

REPO="bor g@ACKUP_I P: / srv/ bor g"
ARCHI VE="db- dai | y- $DATE"
LOG="/var/| og/ backup- borg. | og"

Hi er anpassen:

DBS=("DB_A" "DB_B")

{
echo "==== $(date -u) DAILY gestartet: $ARCH VE ===="

Dunp -> gzip -> Borg via stdin
nysql dunp --dat abases "${DBS[@}" \

--single-transaction --quick --1ock-tables=false \
--routines --events --triggers \

| gzip -1\

| borg create --lock-wait 600 --stats --conpression |z4 \

"$REPQ : $ARCH VE" - \
--stdin-nane "nysql dunp- ${ DATE}. sql . gz"

echo "==== $(date -u) DAILY fertig: $ARCH VE ===="
borg prune --lock-wait 600 -v --list "$REPO" \

-a 'db-daily-*" \
--keep-dail y=14 --keep-weekl y=8 --keep-nont hl y=6

echo "==== $(date -u) DAILY prune fertig ===="
} >> "$LOG' 2>&1
ECF

chnod +x /root/backup-daily.sh

E3) /root/backup-weekly.sh (PROD)

Wodchentliches Backup einer sehr grofRen Datenbank. Allgemein: BIG_DB ist die grof3e
Asset-/Media-Datenbank. Retention konservativ wegen 1 TB: nur wenige Wochen/Monate.

cat >/root/backup-weekly.sh <<' ECF'
#! / bi n/ bash
set -euo pipefail

export BORG_PASSCOMMVAND="/ et ¢/ bor g- passconmand”
export BORG RSH="ssh"

DATE=$(dat e +%-)

REPO="bor g@ACKUP_I P: / srv/ bor g"
ARCHI VE=" bi gdb- weekl y- $DATE"
LOG="/var/| og/ backup- borg. | og"

Hi er anpassen:
Bl G_DB="BI G_DB"

{
echo "==== $(date -u) WEEKLY gestartet: $ARCH VE ===="
nysql dunp --dat abases "$BlI G DB" \
--single-transaction --quick --1ock-tabl es=false \
--routines --events --triggers \
| gzip -1\
| borg create --lock-wait 600 --stats --conpression |z4 \

"$REPQ : $ARCH VE" - \
--stdin-name "nysql dunp- ${ Bl G_DB} - ${ DATE}. sql . gz"

echo "==== $(date -u) WEEKLY fertig: $ARCH VE ===="

Weekly Tineline (sehr konservativ wegen 1TB)
borg prune --lock-wait 600 -v --list "$REPO" \
-a ' bi gdb-weekly-*' \
- - keep-weekl y=4 --keep-nont hl y=3

echo "==== $(date -u) WEEKLY prune fertig ===="
} >> "$LOG' 2>&1
ECF

chnod +x /root/backup-weekly. sh

F. Zeitplan (Cron)
Cron lauft auf PROD. Beispiel: /home 03:30, daily DB 04:30, weekly big DB Sonntag 05:00.

crontab -e

Daily /hone (03:30)
30 3 * * * [root/backup-hone. sh

Daily DB(s) (04:30)
30 4 * * * [root/backup-daily.sh

Weekly big DB (Sonntag 05:00)
05 * * 0 /root/backup-weekly.sh

G. Aufbewahrung (Retention/Prune)

Retention bedeutet: Borg I6scht alte Archive automatisch nach Regeln. Das spart Platz und verhindert, dass
der Backup-Server ,voll lauft”. Die Regeln stehen bereits in den Skripten (prune).

H. Kontrolle: Hat das Backup geklappt?
1) Cron hat den Job gestartet?

Debi an ohne /var/log/syslog -> journalctl
journalctl -u cron --since "today" | egrep "backup-hone| backup-daily|backup-weekl y"

2) Lodgfile prifen (PROD):
tail -n 80 /var/l og/backup-borg.|og
3) Archive im Repository anzeigen (PROD):
BORG_PASSCOWVAND=/ et ¢/ bor g- passcommand borg |ist borg@ACKUP_I P:/srv/borg | tail -n 20

4) Optional: Repository priifen (BACKUP, lokal):

auf BACKUP (als root oder borg, Passphrase nétig)
borg list /srv/borg | tail -n 20

|. Restore — Wiederherstellung

11) Einzelne Datei aus einem /home-Archiv zuriickholen (PROD oder Recovery-Server):

Archi v wahl en

BORG_PASSCOWMAND=/ et ¢/ bor g- passconmand borg |ist borg@ACKUP_I P:/srv/borg | grep hone-daily |

Datei extrahi eren (Beispiel pfad)

BORG_PASSCOWMAND=/ et ¢/ bor g- passcommand borg extract \
bor g@ACKUP_I P: / srv/ bor g: : hone-dai | y- YYYY- MM DD \
home/ USERNAME/ dat ei . t xt

12) Verzeichnis wiederherstellen (in ein Zielverzeichnis):

nkdir -p /restore

cd /restore

BORG_PASSCOVMAND=/ et ¢/ bor g- passconmand borg extract \
bor g@ACKUP_I P: / srv/ bor g: : hone-dai |l y- YYYY- MM DD \
honme/ USERNAME/

I13) Datenbank-Dump zuriickspielen:

1) Dunp aus Borg hol en (auf PROD oder Recovery- Server)
nkdir -p /restore
cd /restore
BORG_PASSCOWMMAND=/ et ¢/ bor g- passconmand borg extract \
bor g@ACKUP_I P: / srv/ borg: : db-dai | y- YYYY- MV DD \
nmysql dunp- YYYY- Mt DD. sql . gz

2) lnport
gunzip -c nysql dunmp- YYYY- MV DD. sql . gz | nysqgl -u root

14) Grof3e DB zuriickspielen (Weekly):

nkdir -p /restore

cd /restore

BORG_PASSCOWMAND=/ et ¢/ bor g- passconmand borg extract \
bor g@ACKUP_I P: / srv/ bor g: : bi gdb- weekl y- YYYY- M DD \
nysql dunp- Bl G_DB- YYYY- Mt DD. sql . gz

gunzip -c nysql dunp- Bl G_DB- YYYY- M\ DD. sql . gz | nysqgl -u root

J. Disaster Recovery — kompletter Neuaufbau

Ziel: PROD ist kaputt (SSD, Hardware, Neuinstallation). Du willst alles wiederherstellen. Schritte in Kurzform:

1) Neuen Server installieren (Debian), Updates einspielen

2) Borg + MariaDB installieren

3) SSH Key erzeugen, Zugriff auf BACKUP herstellen

4) BORG_PASSCOWAND ei nri chten

5) /home aus ei nem passenden home-daily-* Archiv w ederherstellen
6) tagliche DB(s) aus db-daily-* inportieren

7) grole DB aus bi gdb-weekl y-* inportieren

8) Dienste starten (Wb, Apps, Ganmes/Sim Software etc.)

9) Funktionstest, dann Cron w eder aktivieren

Tipp:

Wenn du ganz sicher gehen willst, mach nach einem grof3en Restore einmalig ein ,frisches”
Full-Initial-Backup. Danach wieder normal inkrementell weiter.

K. Typische Fehler & schnelle Losungen

Problem: Cron fragt nach Passphrase / ,BORG_PASSCOMMAND is not set"

Ursache: Cron-Ungebung ist |eer.

Losung: export BORG_PASSCOVWAND i m Skript (steht oben) + Test:

env -i PATH=/ usr/sbin:/usr/bin:/sbin:/bin BORG PASSCOMWAND=/ et c/ bor g- passcommand \
borg info borg@ACKUP_I P:/srv/borg >/dev/null && echo K

Problem: ,Failed to create/acquire the lock ... (timeout)*

Ursache: Ein Borg-Job | auft noch oder hing.
Losung: warten oder alte Prozesse prufen:
ps aux | grep "[b]org"

Notfalls beenden und erneut starten.

Hinweis: ,file changed while we backed it up“

Das ist bei Logfiles normal. Es bedeutet nur: die Datei hat sich wahrend des Backups geéndert. Fir Logs ist
das unkritisch.

L. Sicherheit & gute Praxis

» Backup-Server strikt halten: nur Borg-Repo, wenig zusétzliche Dienste. « Passphrase & Key separat
sichern. « Regelmalfiig testweise einen Restore durchfiihren (z. B. 1 Datei und 1 DB). « Cron-Jobs zeitlich
staffeln. « Retention konservativ, wenn das Repository klein ist (z. B. 1 TB).

Full Guide: Automated Backups with Borg (Linux)

German + English — generic wording, no project- or database-specific names.

Goal: A production server automatically backs up files and databases to a separate backup server. Borg
stores data encrypted, uses deduplication (identical blocks are stored only once) and keeps a defined history.

A. Overview & prerequisites

B. Prepare the backup server

C. Prepare the production server
D. Repository test

E. Backup scripts (files + database)
F. Schedule (Cron)

G. Retention (Prune)

H. Verification: did it work?

I. Restore: single files, directories, databases
J. Disaster recovery: full rebuild

K. Common issues & quick fixes

L. Security & good practice

A. Overview & prerequisites

You have two servers: « PROD = production server (runs all the time) « BACKUP = backup server (receives
backups) We back up: 1) Files (e.g., /lhome, /etc, important configs) 2) Databases (e.g., MariaDB/MySQL) —
a smaller/primary DB daily and one very large DB weekly. Important: Cron must run without interactive
prompts. We unlock Borg via BORG_PASSCOMMAND.

B. Prepare the backup server

Commands in this section run on the BACKUP server.
apt - get update
apt-get install -y borgbackup

adduser --di sabl ed-password --gecos "" borg

nkdir -p /srv/borg
chown borg: borg /srv/borg
chnod 700 /srv/borg

Initialize the repository (as borg user):

su - borg
borg init --encryption=repokey /srv/borg

Optional but recommended: export the key:

su - borg
borg key export /srv/borg /home/borg/borg-key-export.txt
chnod 600 / hone/ bor g/ bor g- key- export . txt

C. Prepare the production server

Commands in this section run on the PROD server.

apt - get update
apt-get install -y borgbackup nariadb-client gzip

ssh-keygen -t ed25519 -C "prod-to-backup”
ssh-copy-id bor g@ACKUP_I P
ssh bor g@ACKUP_I P "echo K"

Passphrase automation (PROD)

nkdir -p /root/.config/borg

chnod 700 /root/.config/borg

nano /root/.confi g/ borg/ passphrase
chnod 600 /root/.config/borg/ passphrase

cat >/etc/borg-passcommand <<' ECF'

#!/ bin/sh
cat /root/.config/borg/passphrase
ECF

chnod 700 /etc/borg-passcomand

BORG_PASSCOVMAND=/ et ¢/ bor g- passconmand borg i nfo bor g@ACKUP_I P: / srv/ borg >/dev/nul |

D. Repository test

BORG_PASSCOMVAND=/ et ¢/ bor g- passcommand borg create --stats --conpression |z4 \
bor g@ACKUP_I P: / srv/ borg: :test-etc-$(date +%) /etc

BORG_PASSCOWMMAND=/ et ¢/ bor g- passcommand borg |ist borg@ACKUP_I P:/srv/borg | tail

E. Backup scripts

We use 3 scripts on PROD: 1) backup-home.sh — daily file backup (e.g., /lhome) 2) backup-daily.sh — daily
dump of your primary DB(s) 3) backup-weekly.sh — weekly dump of one very large DB
(asset/media/“monster” DB) All scripts append to the same log file.

E1l) /root/backup-home.sh (PROD)

Sanme script as in the Gernman section, just replace BACKUP_IP
(Al ready shown above.)

E2) /root/backup-daily.sh (PROD)
Replace DB_A and DB_B with your daily databases.

E3) /root/backup-weekly.sh (PROD)
Replace BIG_DB with your very large database.

F. Schedule (Cron)

crontab -e
30 3 * * * [root/backup-hone. sh

30 4 * * * [root/backup-daily.sh
0 5 * * 0 /root/backup-weekly.sh

H. Verification

&& echo

journalctl -u cron --since "today" | egrep "backup-hone| backup-daily|backup-weekl y"
tail -n 80 /var/l og/backup-borg.|og
BORG_PASSCOWMAND=/ et ¢/ bor g- passcommand borg |ist borg@ACKUP_I P:/srv/borg | tail -n 20

|. Restore

Exanpl e: restore a database dunmp from Borg and inport
nmkdir -p /restore & cd /restore
BORG_PASSCOWMAND=/ et ¢/ bor g- passconmand borg extract \
bor g@ACKUP_I P: / srv/ bor g: : db-dai | y- YYYY- M DD \
nysql dunp- YYYY- MM DD. sql . gz

gunzip -c mysqgl dunmp- YYYY- MV DD. sql .gz | nysqgl -u root

J. Disaster recovery (full rebuild)

1) Install a fresh Debian system

2) Install borg + Mari aDB

3) Setup SSH access to BACKUP

4) Setup BORG_PASSCOMVVAND

5) Restore /home froma hone-daily-* archive
6) lmport db-daily-* dunps

7) lnmport bigdb-weekly-* dunp

8) Start services and verify

9) Re-enable Cron

